Poster # 1776

Geometry meets feedback loops: Shearing and turbulence self-regulation in negative triangularity tokamaks

Rameswar Singh and P H Diamond

Department of Astronomy and Astrophysics, UCSD

29th Fusion Energy Conference Oct 16 - 21, 2023 London, UK

Acknowledgements: T. S. Hahm, O Nelson, L. Schmitz, K. Thome and "Neg. Triang. Cabalists " DIII-D. U.S. Department of Energy Award Number DE-FG02-04ER54738.

Effect of triangularity on confinement, fluctuations, and L-H transition

- <u>TCV</u>: Energy confinement time doubled, fluctuations reduced when $\delta \rightarrow -\delta$
- <u>DIII-D</u>: No H-mode transition for $\delta < \delta_{crit} \sim -0.18$
 - $P_{L \to H}$ diverges for $\delta < \delta_{crit}$.
 - loss of access to 2nd stability region of $n = \infty$ ideal MHD ballooning modes for $\delta < \delta_{crit}$ [Saarelma *et al* PPCF 2021, Nelson *et al* NF 2022].

• Is H mode operation always in 2nd stability region?

- Magnetic separatrix and finite edge current can cause coalescence of 1st and 2nd stable region.
 [Bishop NF 1986]
- Many past examples of (PT) H mode operation in the 1st stable region.
- H-mode persisted even after loss of 2nd stability. [L Lao *et al* NF 1999, J R Ferron *et al* NF 2000]
- What happens to the E'_r induced transport bifurcation picture of L-H transition in NT?

→ Role of mean ExB shear in NT pedestal formation?

How to reconcile confinement improvement in NT L-mode with diverging $P_{th,L\rightarrow H}$ for $\delta < \delta_{crit}$?

- Need think beyond linear stabilization of zoo of modes(TEM/ITG,...)!
- Understanding flux surface shaping effects on turbulence saturation mechanism is important.

• Interplay of NT configuration with secondary modes feedback and shearing?

Zonal flows are reduced in NT

Singh and Diamond NF 2022

GAM frequency and damping rates reduced in NT

• GAM Landau damping is more strongly (~7 times) reduced than the GAM frequency for NT!

 \implies More coherent and stronger GAM ExB shearing field for NT than for PT !

 \implies NT plasma turbulence is likely saturated by GAMs!

...more work in progress...

Geometry dependence of mean ExB shearing rate ω_E

[Singh and Diamond NF 2023, under review

ExB shearing rate in general axisymmetric toroidal geometry obtained from a 2-point correlation calculation: [Hahm & Burrell PoP 1995]

$$\omega_E = \left(\frac{\Delta\psi_0}{\Delta\zeta}\right) \frac{\partial^2}{\partial\psi^2} \Phi_0(\psi),$$

 ψ := poloidal flux ζ := toroidal angle Φ_0 := Mean electrostatic potential $\Delta \psi_0$:=Turbulence correlation length in ψ $\Delta \zeta$:=Turbulence correlation in toroidal angle ζ

- $\frac{\partial^2}{\partial \psi^2} \Phi_0(\psi)$ is set by the radial force balance of ions as usual!
- $\Delta \psi$ is related to turbulence radial correlation length Δr : $\Delta \psi = \Delta r \frac{\partial \psi}{\partial r}$, where ψ' is obtained from the definition of global safety factor q: $\psi' = \frac{I(\psi)}{2\pi q(\psi)} \oint d\theta \frac{\mathcal{F}}{R^2}$
- $\Delta \zeta$ is related to poloidal correlation angle $\Delta \zeta = \nu \Delta \theta$, where the local safety factor $\nu = \frac{I \mathcal{J}}{R^2 w'}$

• Thus,
$$\omega_E = \frac{\Delta r}{\Delta \theta} \frac{R^2 \psi^2}{I \mathcal{J}} \frac{\partial^2}{\partial \psi^2} \Phi_0(\psi)$$
,
Geometry dependent factor
Calculated for Miller's equilibrium for **fixed** $\frac{\Delta r}{\Delta \theta}$ and $\frac{\partial^2}{\partial \psi^2} \Phi_0(\psi)$.

Variation of mean ExB shearing rate with triangularity δ

Geometric 'bifurcation' of shearing rate Maximum shear off the outboard mid-plane for 0.15 **Up-down symmetric** $\delta_l = \delta_u = \delta$ 0.12 for $\delta < \delta_{crit}$ (~NT) \rightarrow Shearing is less effective for $R^2\psi'^2/\mathcal{J}$ 0.1 δ_{crit} $k_{\rm x} = 0$ modes i.e, the modes ballooning at $\theta = 0$. 0.1 0.08 Shear at $\theta = 0$: ullet0 0.06 \downarrow with increasing NT. 1 • Weaker for NT than for PT. Note that 0.04 0 fluctuations balloon at $\theta = 0$. Thus, δ 0.02 shearing efficiency $\downarrow \Longrightarrow P_{L \to H, th} \uparrow (!?).$ 0.5 0 -0.5 -1 θ/π (b)Up-down asymmetric $\delta_l \neq \delta_u$ (b)0.035 $\delta_{u,crit}$ 0.15 $\delta_l = 0$ $rac{R^2\psi'^2}{\pi}\mathcal{J}d heta/\int\mathcal{J}d heta$ $\frac{R^2 \psi'^2/\mathcal{J}}{100}$ 0.03 0.1 ∽0.025 0 0.02 δ_u 0 -0.5 0.5 0 1 -1 θ/π -1 Flux surface averaged shearing rate is higher Maximum shear above the outboard for NT than for PT. -Global confinement ?! mid-plane for for $\delta_u < \delta_{u,crit} \& \delta_l > \delta_u$

Shafranov shift induced transport bifurcation

• ITB formation in high- β_p regime is often linked to transport bifurcation due to turbulence stabilization by Shafranov shift due to mag drift reduction/reversal, *ignoring* the mean ExB shear effect. [Mike Beer *et al* PoP 1997, S Ding et *al* PoP 2017, J McClenaghan et *al* PoP 2019, G M Staebler et *al* PoP 2017]

Feedback loop for Shafranov shift induced transport bifurcation

- But... like it or not mean shear *exist* in high- β_p discharges!
- So how does mean shear and Shafranov shift interact ?
- Interplay of mean ExB shear, Shafranov shift and NT?

Variation of mean ExB shearing rate with Shafranov shift gradient R'_0

On increasing $-R'_0$:

- Shearing rate increases for all δ .
- δ_c moves toward δ^- on increasing $-R'_0$.

→• Key reason \rightarrow flux compression.

Significant for:

- high β_p regime (i.e, RS ITB) as $R'_0 \propto \frac{r}{R_0} \beta_p$
- NT shapes
 - as $\beta_p(\delta^-) > \beta_p(\delta^+)$
 - Numerical MHD equilibrium study shows $R'_0(\delta^-) > R'_0(\delta^+)$ even for fixed β_p .
- Even more significant for future NT+ITB discharges

Implications of Shafranov shift effect on ExB shear

• Shafranov shift affects turbulence in 2 distinct ways:

(I) Stabilizes turbulence by reduction/reversal of magnetic drifts

(II) Directly enhances the mean shear, \rightarrow additional turbulence suppression

Both can cause bifurcation to enhanced confinement state independently. Bifurcation by (I) is often invoked as a mechanism of confinement improvement in high- β_p regime, *ignoring* the mean shear effect.

Enhanced mean ExB shearing by Shafranov shift provides a +ve feedback on the feedback loop of the Shafranov shift induced transport bifurcation.

Shafranov shift also has a +ve effect on the mean ExB shear induced transport bifurcation, not only through a reduction of the linear growth rate but also through the enhanced ExB sharing rate.

Both (I) and (II) can work in tandem to reduce the ∇P_{crit} for the onset of ITB in reversed shear PT shape

Conclusions

- **Zonal flows are weaker in NT than in PT** due to increased neoclassical screening, from an increase in trapped fraction in NT.
- GAM frequency and Landau damping rates are significantly reduced in NT due to reduction of both magnetic drift frequency and parallel transit frequency.
 - → GAM is likely the dominant player for turbulence regulation in NT.
- Maximum shear off the outboard mid-plane for $\delta < \delta_{crit} (\leq 0)$
 - → <u>Up-down symmetry</u>: Max shear located symmetrically above and below the outboard mid-plane for $\delta_u = \delta_l = \delta < \delta_{crit}$
 - → <u>Up-down asymmetry</u>: Max shear located above the outboard mid-plane for $\delta_u < \delta_{crit}$ & $\delta_l > \delta_u$. Max shear located below the outboard mid-plane for $\delta_l < \delta_{crit}$ & $\delta_u > \delta_l$.
 - → Shearing is more effective for $k_x \neq 0$ modes for NT. Are these relevant?
 - Shear at θ = 0 decreases with increasing NT. Fluctuations balloon at θ = 0. Thus, shearing efficiency ↓ ⇒ $P_{L \to H,th}$ ↑(!?). Is this sufficient ?
- Direct effect of Shafranov shift gradient $-R'_0$ on shearing rate: Shearing rate increases with increasing $-R'_0$ for all δ . Key reason \rightarrow flux compression. Significant for high β_p regime and NT shapes.

These results has implications not just for confinement & L-H transition for NT but also for ITB discharges in PT and NT(proposed), and NT core and and pedestal.

For the experimentalists

- Mean ExB Shearing is maximal off the mid-pane for NT: ⇒Eddy tilting should be strongest off the mid-plane.
 - Direct imaging using gas-puffing.
 - Joint pdf of radial and poloidal velocity fluctuations (i.e., $\tilde{v}_r \& \tilde{v}_{\theta}$) should show max tilting (most-correlated) off the mid-plane for NT.
 - Up-down asymmetric tilting distribution for $\delta_u \neq \delta_l$
- Shafranov shift gradient R'_0 directly boosts the mean ExB shear:
 - Re-assess the role of mean ExB shear in high- β_p reverse shear discharges.

- Variation of GAM energy to ZF energy as PT→NT, using fluctuation diagnostics.
- Radial correlation length of ZF vs δ , frequency resolved Reynolds power vs δ , using BES diagnostics.